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ABSTRACT
Changes in type of interaction (e.g., individual vs. group
interactions) can potentially impact data-driven models de-
veloped for social robots. In this paper, we provide a first
investigation in the effects of changing group size in data-
driven models for HRI, by analyzing how a model trained
on data collected from participants interacting individually
performs in test data collected from group interactions, and
vice-versa. Another model combining data from both indi-
vidual and group interactions is also investigated. We per-
form these experiments in the context of predicting disen-
gagement behaviors in children interacting with two social
robots. Our results show that a model trained with group
data generalizes better to individual participants than the
other way around. The mixed model seems a good compro-
mise, but it does not achieve the performance levels of the
models trained for a specific type of interaction.

Keywords
Child-robot interaction; disengagement; multimodal classi-
fication; multiparty settings.

1. INTRODUCTION
Human behavior is largely dependent on social context. The
way we behave alone is different than how we behave in a
group [22]. For this reason, most data-driven perceptual
systems developed for social robots rely on data collected in
the same type of interaction where most future interactions
are likely to occur. For example, a robot bartender is able
to predict engagement using data collected in multiparty
settings [7], while a chess-playing robot relies on data from
a single user at a time [4]. Will the robot bartender be able
to respond appropriately to the lonely costumer at the end
of the night? How would the chess-playing robot behave
when placed in a science fair?
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Robots will inevitably have to interact with users in contexts
with different group sizes. This might occur in a variety of
domains, such as museums, hospitals or classrooms. So far,
little is known about how perception models perform when
they are tested in a group size different than the one they
were trained on. However, this feature is critical for some
perception problems. That is, the way the robot should
interpret a user glancing to the side is different if that user
is alone or if the user is in a group.

We provide a first investigation of this issue by address-
ing the following research questions: Using the same set of
features, how does group size affect the performance of a
data-driven perception model? Moreover, for the same clas-
sification problem, can a model trained on data from one
group size generalize well when tested in data from another
context? In this paper, we answer these questions in the par-
ticular case of predicting disengagement in child-robot inter-
action. According to Pohl and Murray-Smith [12], engage-
ment (or disengagement) with technology is dependent on
inhibitor factors from three main categories: physical (sys-
tem is not accessible), social (people change their behavior
built on what they envision people around them are thinking
about them) and mental (primarily related to distraction).
Because the two last inhibitor factors are highly dependent
on type of interaction, the automatic prediction of engage-
ment/disengagement is a very interesting case study to our
research questions.

We start our analysis by training and testing two different
disengagement models in the context of an interactive nar-
rative scenario with social robots. The models were built on
two different datasets, one with data collected from partic-
ipants interacting alone with the robots, and another with
data from participants interacting in groups of three. Even
in the model collected from group data, the goal is to pre-
dict disengagement of one participant at a time. The models
use the exact same set of audio, visual and contextual fea-
tures, and the group model does not encode features from
the other participants around the robots. This was a de-
liberate choice, not only to allow a more fair comparison
between the models, but also because in future applications
we may not have access to information of all participants
in the group, such as due to occlusions or limitations in the
robot sensors.



To address the second research question, we report the re-
sults of testing each model using data from participants of
the opposite dataset. Finally, we train a mixed model with
data from both datasets to see how this model performs
in individual and group data. Our results show that while
a mixed model (trained with data instances from the two
group sizes) is a good compromise, higher performances are
achieved when the models are trained using only data from a
similar group size as the target interaction. We discuss these
results in terms of potential implications for future research
in this area.

2. BACKGROUND
Engagement, defined as “the process by which individuals
in an interaction start, maintain and end their perceived
connection to one another” [17], has been studied from two
main perspectives in HRI. One perspective is dedicated to
understanding which features or social cues robots should be
endowed with to increase participant’s engagement with the
robot. For example, Sidner and colleagues [17] showed that
people report higher levels of engagement when interacting
with a robot capable of face-tracking and performing ges-
tures. More recently, researchers investigated the impact of
social cues including voice and facial expressions [10], while
others studied the impact of a robot side-kick on perceptions
of user engagement [20].

The second perspective, and the perspective more relevant
to the work presented in this paper, has to do with the auto-
matic recognition of engagement (or disengagement) in users
interacting with robots or virtual agents. Seminal work in
this area has focused on predicting engagement intention,
i.e., the problem of whether users around a robot (or a vir-
tual agent) express a desire to start interacting with the
system. In this domain, Michalowski et al. [9] presented a
spatial model of social engagement grounded in proxemics
theory. Bohus and Horvitz [2] proposed the first data-driven
approach to predict engagement intentions using spatiotem-
poral and attention cues for a conversational virtual agent.
A similar model, using mainly visual features, was developed
and tested in a social robot [21].

Other authors have investigated the automatic prediction of
engagement as a continuous signal. The main goal here is
typically to predict engagement or, more importantly, disen-
gagement behaviors in real-time, so that the robot or agent
can employ repair mechanisms to keep users engaged in the
interaction. To address this problem, several models have
been proposed using a variety of features, including visual
and task-related information [4], eye gaze [11], speech and
gestures [15], body postures [16] and EEG data [19]. Some
authors compared the performance of predicting engagement
using different machine learning and rule-based models [7].

The presented work shows that data-driven methods are
clearly the most common and successful approaches for au-
tomatically predicting engagement in HRI, both in settings
with one and multiple users. Despite the significant ad-
vances in this area, to our knowledge no multiparty engage-
ment model has been tested in data from individual partic-
ipants, or the other way around. In this work, we aim to
advance the state-of-the-art in this area by performing the
first experiment of this kind.

3. METHODOLOGY
3.1 Case Study
The case study used in this work utilizes two MyKeepon
Robots (see Figure 1) that play out interactive stories around
emotional words (e.g., frustration, inclusion, cooperation).
At specific points, users can influence the story by choosing
from among a set of optional scenes presented on a tablet.
In other words, users can tell one of the robots what to do,
and then see the impact of the selected action on the course
of the story.

The robots use pre-recorded adult utterances with modified
pitch signal to make them more childlike. The robots can
display several animations during the interaction, such as
speaking, idling (while they are waiting for children’s choices
or listening to the other robot) or bouncing (moving up and
down and side to side – used in specific moments of the sto-
ries). The robots are autonomous, but at this point their
only perception of the world is from the story choices se-
lected on the tablet.

Our goal is to develop a classifier that allows the robots to
accurately perceive when children are disengaged in the in-
teraction, despite the number of children interacting at the
same time. Upon detecting disengagement, the robots could
employ repair strategies, such as displaying more active non-
verbal behaviors to call attention to or change the story, in
the attempt to re-engage users in the interaction.

For this analysis, the models will mostly rely on hand-annotated
data. This was a deliberate choice because we wanted to dis-
tinguish the adequacy of the feature set and its effects on
predicting disengagement in different contexts from the ade-
quacy of particular feature detectors. Nevertheless, we plan
to replace the hand-annotated features with autonomous
modules, such that we can run a real-time implementation
of the models in our robots.

3.2 Data Collection
Our data set consists of 40 children (22 female, 18 male),
with ages between 6 and 8 years old (M = 7.53, SD = 0.51),
interacting with the social robots in the interactive narrative
scenario described in the previous section. Participants were
recruited from an elementary school in the United States,
where the data collection was conducted. The data collec-
tion took place in a small meeting room of the school. Par-
ticipants were randomly assigned to a type of interaction
condition: 19 were assigned to the single condition and 21
were assigned to the group condition (7 groups). The two
conditions were balanced for gender.

One experimenter was present in the room for the entire
session. The experimenter started by introducing the two
robots and telling participants that the robots would play
out a story, and then when the story stopped, they could
decide what would happen next from the options that ap-
peared on the tablet. In the group condition, participants
were informed that they would have to choose the next story
option together. No additional instructions were given. The
story contained an introductory scene and three different
options that participants could then freely explore. The in-
teraction ended when participants explored all three of the
story options. The average actual interaction time, from the



(a) single (b) groups

Figure 1: Sketch of the two interaction settings where data was collected.

moment when participants selected the first story option un-
til the robots played all the possible scenes, was 4 minutes
36 seconds (SD = 39 seconds).

Three HD cameras were used to record the interaction in the
group condition, while in the single condition one HD cam-
era was used. Each camera recorded the upper body posture
and face of one single participant. Log files containing the
content of the robots’ actions (speech and nonverbal behav-
iors), as well as the story choices made by the children, were
generated automatically. The logs contained timestamps to
allow future synchronization with the remaining data.

3.3 Feature Extraction
Our goal is to create a data-driven model that allows our
robots to predict, in real-time, when each participant is dis-
engaged in the interaction. To achieve this goal, we consid-
ered a set of features based on prior HRI research on auto-
matic prediction of engagement and on research describing
typical behaviors when people are engaged and disengaged
[1, 14].

Using the collected videos and the ELAN annotation tool
[3], one annotator (blind to our research questions) coded
the start and end times of each participant’s vocalizations,
backchannel sounds, body posture (leaning forward/backward,
arms on the table), gestures (smiles, mimicking robots, ex-
citable bouncing and strong emotional reactions), concentra-
tion and boredom signs and off task behaviors. We ran an
off-the-shelf face tracking algorithm1 on the video recordings
to automatically extract head orientation features – looking
at the robots, looking up, looking down and rolling head.
The contextual features – robots speaking, robots bouncing,
and participant choosing an action – were extracted from
the interaction logs. The final set of features considered to
predict disengagement in this work are listed in Table 1.

Determining the optimal window size for analysis is still an
open challenge in the processing of many social signals (like
engagement), where it is hard to draw semantic or lexical

1http://www.omron.com/r d/coretech/vision/okao.html

boundaries [8]. Therefore, our approach was to use a small
unit of analysis to simulate real-time decision-making in the
disengagement predictions. From the hand-coded annota-
tions, automatically generated face tracking analysis and
interaction logs of each participant, we extracted a set of
multimodal features into 500 msec time slices. The binary
value of a feature for every time slice reflects what happened
in the majority of the 500 msec interval. For example, voice
activity will be set to true if a participant is speaking for
more than 250 msec in that time slice.

3.4 Ground Truth Labelling
The ground truth labels for training and testing our data
were based on human observations. Without having access
to any of the extracted features, two independent coders
(other than the one who coded children’s behaviors) were
given our working definition of engagement [17] and asked to
rate participants’ level of engagement during the interaction
with the robots. Using the same video annotation tool, they
coded the start and end times of disengagement, engagement
and neutral episodes for all participants. The neutral cat-
egory was used for moments where it was unclear whether
participants were engaged or disengaged. In the group in-
teractions, raters watched the interaction three times, once
in the perspective of each participant. The videos of each
participant in the group condition were trimmed to display
the least possible information from the other children in the
scene.

Both coders rated all the collected videos. As in the fea-
ture extraction process, the extracted ground truth labels for
each rater were based on 500msec time slices reflecting the
most predominant category in that segment. Inter-observer
agreement between the two coders was 74% (k = 0.41, p <
.001). The moderate agreement result was expected because
perceived engagement can be a subjective observation. Nev-
ertheless, to not undermine the comparison between models
later on, we only consider the time slices where both raters
agreed in the engagement category for future training and
testing.



Table 1: Multimodal features considered for disengagement prediction.

Modality Feature name Description Source

Audio
voice activity Whether a participant is speaking Hand annotated
backchannel Presence of backchannel sounds such as ”uh-huh” and ”hmm” Hand annotated

Visual

look at robots Looking at the robots or to the sides Autom. extracted
look up Looking up (above the robots) Autom. extracted
look down Looking down (not looking at the robots) Autom. extracted
rolling head Rolling the head to the sides Autom. extracted
lean forward Leaning forward Hand annotated
lean backward Leaning backward Hand annotated
arms on table Placing the arms on the table Hand annotated
smiling Presence of smiles Hand annotated
head nods Presence of head nods Hand annotated
mimicking robots Micking the robots’ movements Hand annotated
excitable boucing Moving back and forth in the chair Hand annotated
emotional reaction Strong emotional reactions (e.g. surprise) Hand annotated
boredom signs Presence of boredom signs such as shrugs or fiddling Hand annotated
concentration signs Presence of concentration signs such as fingers in the mouth Hand annotated
off task Presence of off task behaviors (e.g., playing with sticker tag) Hand annotated

Contextual
robots speaking Whether any of the robots is speaking Interaction logs
robots bouncing Whether any of the robots is displaying a bouncing animation Interaction logs
choosing Two second window before a choice is made in the tablet Interaction logs

(a) disengagement (b) engagement (c) disengagement (d) engagement

Figure 2: Snapshots of the collected datasets representing the disengagement different behaviors.

3.5 Two datasets: DSI and DSG

Two datasets were used in this analysis: DSI , including
the 500 msec segments from all participants who interacted
alone with the robots, and DSG, including segments for par-
ticipants who interacted with the robots in small groups (see
fig 2). Note that, in DSG, the feature vectors only encode
features related to the behavior of one participant, but all
participants in each group are included in the dataset. Data
from one participant from DSI and from four participants
from DSG were excluded because they had no disengage-
ment instances rated as such by the two coders. Table 2
provides a characterization of the two datasets. Each par-
ticipant contributed an approximately similar number of in-
stances to the data set.

Table 2: Characterization of the two datasets in terms of
number of participants and number of 500msec instances
for each label.

Num. Participants Disengaged Engaged

DSI 18 1283 5616
DSG 17 853 4944

4. PREDICTING DISENGAGEMENT IN
INDIVIDUAL AND SMALL GROUP
INTERACTIONS

Our main goal is to investigate the effects of different group
formations in the automatic prediction of disengagement in
Human-Robot Interaction, rather than maximizing accuracy
by trying different machine learning techniques or feature
sets. As such, we focus our analysis in one classification
technique and the same set of features in both cases. We
decided to use Support Vector Machines (SVMs) as they
have proven effective within similar classification problems
in HRI [13, 18, 21].

4.1 Procedure
Using LibSVM Library [5], two SVM binary classifiers were
trained, one using DSI , which we will refer as MI , and an-
other using DSG, referred from now on as MG. We started
by running the feature selection tool provided in this library
(fselect), which performs feature ranking using F-scores [6].
The feature selection analysis was performed not only to find
the optimal set of features, but also to rank and compare the
features with the most discriminative power in each dataset.



The results of this latter analysis are reported in the next
subsection. The fselect tool indicated that, in both datasets,
the best classification accuracy was in the presence of 19 of
the 20 extracted features (see Table 1). In both cases, head
nods was the only feature that revealed no discriminative
power for disengagement detection. This feature was there-
fore excluded from the analysis.

The two SVM models (type C-SVC) with a Radial Basis
Function (RBF) kernel were trained with the 19 selected
features, using different weights to account for the unbal-
anced number of disengagement and engagement instances
in each data set. A utility tool also included in the LibSVM
library (grid) was used to find the optimal parameters C and
gamma (C = 4, γ = 0.5 for MI and C = 1, γ = 0.5 for MG).

The consistency of the two models was measured through
leave-one-out cross-validation, using the data instances from
one participant as the test set and training a model in the
remaining participants of that data set. This process was
repeated 18 times for MI and 17 times for MG, allowing
data from each participant to serve once as test set in his/her
respective data set.

4.2 Performance Evaluation
We averaged Accuracy, Area Under ROC Curve (AUC),
True Positive Rate (TPR) and True Negative Rate (TPR)
values from the cross-validation tests of each model. Note
that, because our goal is to predict disengagement, TPR
reflects the proportion of actual disengagement data points
correctly classified as such, and TNR refers to the propor-
tion of correctly predicted engagement instances. Because
our datasets are unbalanced, AUC, TPR and TNR values
are more informative than accuracy to understand how the
models perform.

Cross-validation of MI showed an average accuracy of 63%,
with AUC = 0.65, TPR = 0.68 and TNR = 0.62. This
performance was slightly better than MG, which achieved
60% average accuracy, AUC = 0.57, TPR = 0.53 and
TNR = 0.61. This result was not surprising, because when
children are alone with the robots, interactions tend to be
less chaotic, resulting in more accurate disengagement pre-
dictions.

Despite similar classification performances, the feature rank-
ing analysis indicates that the two models are inherently
different. Table 3 shows the top 10 most discriminative fea-
tures in the two models. Although 7 of the top 10 features
are the same, their rankings and weights are different in each
model. For example, while in MI the most discriminative
feature for predicting disengagement is related to body pos-
ture (arms on the table), the most relevant feature for MG

is whether the participant is looking at the robots or not.

5. TESTING THE MODELS IN DIFFERENT
DATA SETS

The models generated based on the datasets with different
group size show slightly different performances and some
differences on the features with most discriminative power.
But are these models truly different? How do performance
metrics change if we train a model with participants from

Table 3: Top 10 most discriminative features in each model
with normalized F-scores.

MI | MG

Feature Name F-score Feature Name F-score

arms on table 1.00 look at robots 1.00
look down 0.68 voice activity 0.65
look at robots 0.47 lean backward 0.27
lean forward 0.33 robots speaking 0.14
concent. signs 0.23 smiling 0.13
boredom signs 0.14 boredom signs 0.11
robots speaking 0.13 robots bouncing 0.08
choosing 0.10 backchannel 0.05
robots bouncing 0.10 off task 0.05
rolling head 0.06 choosing 0.03

the individual condition and test it with group data, or
vice versa? Moreover, what happens if we combine data
instances from both social settings (individual and group)
in the same model?

In the previous section, we analyzed the ability of our models
to predict disengagement in data from the same social set-
ting (i.e., MI was tested with data from other participants
from the individual condition and MG was tested with group
data). We now investigate the behavior of the models when
tested using data from the other data set, which offers a
different social setting in the same scenario. To further in-
vestigate this issue, we report the performance metrics of a
joint model trained with data from the two datasets.

5.1 Procedure
Using the SVM parameters obtained in the previous exper-
iment for DSI , we trained a model with the instances of
the 18 participants from the individual condition (MI) and
tested this model in data from participants in the group
condition, averaging the performances of every participant
from DSG. Similarly, a model using all 17 participants from
DSG was trained (MSG) and tested in each participant from
DSI .

Finally, we investigated a model combining both datasets
(MA). This model was trained with the same subset of 19
features, using a C-SVS SVM with RBF Kernel parameters
C = 64 and γ = 0.125. MA was tested with participants
from both data sets using a leave-one-participant-out cross-
validation approach (the data instances from the participant
used as test set were the only ones left out in the trained
model in every cross-validation cycle).

5.2 Performance Evaluation
We used the same performance metrics as in the previous ex-
periment: Accuracy, Area Under ROC Curve (AUC), True
Positive Rate (TPR) and True Negative Rate (TPR), aver-
aged across repeated validation tests.

When testing how MI performs with data from DSG, 17 test
cycles (each cycle contains the data points from one partic-
ipant in the group condition) show an average accuracy of
75%, AUC = 0.59, TPR = 0.36 and TNR = 0.82. On the
other hand, the performance of MG using data from DI in



18 validation tests resulted in an average accuracy of 56%,
AUC = 0.58, TPR = 0.60 and TNR = 0.55.

In the analysis of MA, to better understand how perfor-
mance is affected by the different datasets, we report sep-
arately the results obtained by testing MA in participants
from DSI and DSG. In 18-fold cross-validation with data
points from participants in DSI , MA showed an average ac-
curacy of 63%, AUC = 0.61, TPR = 0.56 and TNR = 0.65.
When using data from DSG as a test set, MA accuracy
increases to 73%, with AUC = 0.62, TPR = 0.47 and
TNR = 0.78.

Table 4: Summary of classification results of all experiments.

Model MI MG MA

Test dataset DSI DSG DSI DSG DSI DSG

Accuracy 63% 75% 56% 60% 63% 73%
TPR 0.68 0.36 0.60 0.53 0.56 0.47
TNR 0.62 0.82 0.55 0.61 0.65 0.78
AUC 0.65 0.59 0.58 0.57 0.61 0.62

6. DISCUSSION
Our results indicate that a disengagement model trained
only with data from users interacting alone with the robot
might not be appropriate for group interactions, but a model
trained only with group data might perform reasonably well
in HRI scenarios with a single user. Table 4 and the chart
in Figure 3 summarize the results obtained in the classifi-
cation experiments conducted in this paper. Overall, the
results show that the selected multimodal features can be
used to successfully predict disengagement in both types of
interaction (i.e., a small group or a single participant).

In the cross-validation results using data collected in the
same type of interaction, MI seemed to be a slightly more
coherent model thanMG. However, MG showed greater flex-
ibility in dealing with data from a different type of interac-
tion. In the testing procedures with data from participants
interacting alone with the robots (DSI), the performance
measures of MG remained roughly the same. On the other
hand, in tests with data from DSG, although accuracy and
TNR were fairly high, the TPR of MI was extremely low.

The performance results of MA, the model trained with in-
stances from both datasets, lie in-between these two extreme
comparisons. The average performance of MA tested with
DSI instances shows better generalization than when DSI

instances are trained in MG, but not as good as the perfor-
mance of MI . In the tests using group data (participants
from DSG), MA performs better than MG in some metrics
but again, TPR is very poor. It is relevant to stress that
MA was trained with nearly twice as many data points as
MI and MG, as it included both datasets (only excluding
data from the participant used as test set at every cycle),
but more data does not always mean better performance. In
this case, MA had to make generalizations from disengage-
ment behaviors in different type of interactions (individual
and group interactions), which could explain the decreased
performance when compared to MI and MG individually.

A possible interpretation of these results is that in group

settings there is more variety in the type of disengagement
behaviors children exhibit. When disengaged, some children
simply behave as if they were by themselves, while others, for
example, start interacting socially with their peers, making
the classification of disengagement more challenging because
the model needs to make generalizations over a larger set of
potential options.

Figure 3: True Positive Rates (TPR) and True Negative
Rates (TNR) obtained in the classification experiments.

7. LIMITATIONS
These experiments were conducted in an educational con-
text using children’s data. Although the generated models
can potentially be re-used in other domains because most
of the selected features are domain independent, we cannot
be certain that similar performance results will be obtained
in different application domains or, more importantly, in
datasets with adults.

To further understand the lower performance of MG com-
pared toMI , we plan to collect more group data and perform
a more detailed analysis of the group interactions. In par-
ticular, we intend to study different behavioral profiles, and
use that information to segment the group data in several
sub-datasets – and eventually different models.

8. CONCLUSION
In this paper, we investigated the role of type of interac-
tion (one participant versus groups of three participants) in
the automatic prediction of disengagement in HRI. We re-
ported a set of classification experiments comparing three
distinct SVM-based disengagement models generated with
the same set of features: a model trained with data from
participants interacting alone with two social robots (MI),
a model trained with data from participants interacting with
the robots in small groups (MG), and a third model com-
bining data from the two datasets (MA).

Our results indicate that, while a model trained with data in-
stances from both type of interactions is a good compromise,
not surprisingly the prediction of disengagement episodes is
better achieved when the model is trained using only data
from a similar type of interaction as the target interaction.
In practical terms, ideally the robot should have two dif-
ferent prediction models and, depending on the number of
people around it, use the most appropriate model to predict
disengagement. However, in cases when that is not possible,
we found that a model trained in group data performs better



on single children than the other way around. Although we
anticipate similar findings in the prediction of other social
and motivational states, further research is needed in this
direction.

The main contribution of this paper goes beyond providing
a framework for the automatic prediction of disengagement
in Human-Robot Interaction using domain independent fea-
tures; to our knowledge, this is the first work exploring how
automatic predictions of a social phenomenon are affected by
manipulating the number of people around the robot. With
this work, we expect to draw attention in the HRI com-
munity to the need for developing perception mechanisms
tailored to the specific type of interactions where robots will
interact with users.
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